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- The nation’s critical infrastructure is increasingly characterized by
large networks

— electrical power grids

— road and airline systems
— biological pathways

— chemical plants

— Internet

Motivation

United States
transmission grid
Source: FEMA
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Problem: Design of Resilient Topologies

Topology governs operational efficiency and
resiliency

How to optimize topology In the event of threats
and disruptions?

Which remedial action must be taken?

Where In the current network remedial actions should
be taken?

Whether remedial actions are even worth taking?
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- Distance: ‘
—d (i, j) = length of the shortest path between i and j /
- Average Path Length

(n=1)" 1<1,)<n

2
* |nteraction Efficiency

— “Time or Effort” required for an exchange between agents
i andj 1

— Measured by Path length Bt = @

O
> (i) l/g
(d)=Average APSP = Inj . \ /

— Smaller average path length, higher efficiency
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- Failure of one or more nodes/edges
— Structural robustness:
* Number of resulting component(s)
* Resulting graph connected: perfectly robust
— Functional robustness:
- Efficiency of resulting component(s)

* Average path length of resulting graph unchanged: perfectly
robust

— Worst-case versus average-case

Overall Robustness: combination of above
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« They are often conflicting Objectives

— Increasing efficiency often implies reducing robustness for the
same cost

— And vice versa
- Efficiency : A measure of short-term performance or survival
* Robustness: A measure of long-term performance or survival
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*- MST:e=¢,;;=n-1

— No redundancy or excess connectivity
- CG:e=¢e,, =N(N-1)/2

— Maximum redundancy
- Redundancy coefficient

,8: €— €t OSBSI

ecg ~ Chst

e Structural and Functional Redundancies

e Cost: measure of the economy of design

— Assumption: All nodes and edges have equal importance
— Cost peredge =1, Total costC=¢e
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- For a given environment o, design a net to maximize survival fithess
G

max G=a . + (1-a) ny —¢/(B.k) —¢c,(n)

neis the efficiency

17 1S the robustness

a iIsaconstant, 0 <o <1

c, Is the cost function related to the addition of edges

C, is the cost function related to the addition of nodes

k is the vertex degree of the node to which a new edge is being added
S is the redundancy coefficient

n is the number of nodes Principle of Maximum Harmony
Harmony Function G
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Different ‘Survival’ Environments o

ca=0

— Only Robustness matters for survival
ca=1

— Only Efficiency matters
- a=05

— Both matter equally
Other o values are possible
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San Francisco Airport

SAN FRANCISCO
[ b Tgrm INTERNATIONAL
AIRPORT (SFO)
£l |
1 Int'Esrna‘lliﬂnaI Terminal 3
San Francisco Terminal

G Gate

International
Parking

Terminal 2

Domestic
Parking

Terminal 1 The Key
E Parking

an loee ﬂ Car Rental

Perfect Hub, Alpha=0.5
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RNEDE: Resilient Network
Design Environment
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 Visualize, Create, Edit and Analyze
large complex networks/graphs

* Dynamic simulation platform for the
development and evaluation of
methods for control of networked

systems
* Object Oriented system
* Prototype version in Python
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RNEDESIm: A Simulator for Resilient Network Design

Key Features

Replays various threat and disruption
scenarios

Suggests various remedial options
Provides a visual guide of the network

Scalable for large networks consisting of
thousands of nodes and edges

Application-independent
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* Topology T = (V,E)

- T satisfies set of constraints C = {c,,...,C,}
« Cost function for maintaining T, S: T —-> R*
- Set of incidents (disruptions), | ={i,...,i,}

- Compromised topology, T’ = (V’,E’) or (V, E’) or
(V’,E); May not satisfy C

- Amount of compromise: F: (T, T')) - R*

- Set of remedial actions, A ={a,,...,a,}, and a cost
function, Q: A — R*
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Resilient Control of Topology

Obtain a set of remedial actions such that the
compromise Is minimized

e, F(T, T)<e

Given the disruptions, minimize the cost of
maintaining the compromised topology and the
cost of making the change



Optimizer and Simulator ML oot ooy

Optimizer: Minimizes the difference In
the value of the objective function, F,
on the original topology and the
compromised topology by choosing a
set of remedial actions

Simulator: Given a network
specification, It calculates the value of
the objective function F
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RNEDE In-Action
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Disruptions:

time
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Determines if it is beneficial to transition to T’ or remain in
T7
The decision Is based on

the incoming sequence of disruptions,

the transition cost

associated with remaining in the current topology
and the cost of transitioning between T and T".

Adopts a rent-vs-buy model

staying in the current topology corresponds to renting
and moving to another topology corresponds to buying

Several known algorithms, greedy and worst-case.
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A Case Study: Supply Chain Networks

M

Supply chain involves both flow . 7 o
of physical products and
information — n. u.:.... " m

Customes

-
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PRESIDENTIAL DISASTER DECLARATIONS
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1 Manufacturing Centre in Detroit
50 Customer Zones (US States)
Delivery to State Capitals

10 candidates for warehouse locations:
One in each FEMA region

Boston, NYC, Philadelphia, Jacksonville, Chicago,
Houston, Kansas City, Denver, LA, Seattle

Demand for each state proportional to the state
population

The distance between the manufacturing centers,
warehouses and customer zones is road distance
from Google™ Maps
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EDC and OC Trad‘e-offs:

OperationCost

ExpectedDisruptionCost

x 10

Operation cost vs alpha x 107
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Summary
Resilient Network Design Environment

Trade-offs between efficiency and
robustness and their connection to

topologies

Re-optimize the topology when subject
to disruptions for resileint control

Python and GAMS
Resilient Supply Chain Case Study



